

GATEKEEPER – Platform overview

GATEKEEPER © 2

Table of contents
ABSTRACT ...4

1 ARCHITECTURE DEFINITION PRINCIPLES ... 5

1.1 WEB OF THINGS ... 5

1.1.1 Principles for Gatekeeper data ... 6

1.1.2 Gatekeeper Web of Thing based architecture .. 7

1.1.3 Role of WoT Thing Description ... 9

1.1.4 Role of FHIR and relation with Thing Description .. 15

1.2 GATEKEEPER PLATFORM STAKEHOLDERS .. 16

1.3 SECURITY AND PRIVACY CONSIDERATIONS ... 17

1.3.1 Infrastructure security ..18

2 GATEKEEPER ARCHITECTURE ... 20

2.1 LOGICAL ARCHITECTURE .. 20

3 INFORMATION MODEL .. 24

3.1 HEALTH MEASURES ... 25

3.1.1 Gatekeeper FHIR profile .. 26

4 GATEKEEPER COMPONENTS ... 28

4.1 THINGS MANAGEMENT SYSTEM ... 28

4.2 THINGS DIRECTORY ... 32

4.3 GK-INTEGRATIONENGINE .. 33

4.4 GK-FHIRSERVER .. 35

4.5 RDFSEMANTICDATALAKE ... 38

4.6 TRUSTAUTHORITY .. 38

REFERENCES ... 40

APPENDIX A GLOSSARY .. 41

GATEKEEPER – Platform overview

GATEKEEPER © 3

List of tables

TABLE 1: CORE VOCABULARY OF THING DESCRIPTION [11] .. 12

TABLE 2: COMPONENTS LIST OVERVIEW ... 28

List of figures

FIGURE 1 - GATEKEEPER LAYERED ARCHITECTURE ... 5

FIGURE 2 - WEB OF THINGS MODEL [8] .. 9

FIGURE 3 - FROM BINDING TEMPLATES TO PROTOCOL BINDING [9] .. 9

FIGURE 4 - GATEKEEPER PLATFORM STAKEHOLDERS .. 16

FIGURE 5 –GATEKEEPER ARCHITECTURE VIEW - BUSINESS AND TRANSACTION SPACES 20

FIGURE 6 –GATEKEEPER ARCHITECTURE VIEW – CONSUMER AND HEALTHCARE SPACES 21

FIGURE 16 - HIGH LEVEL UML DOMAIN MODEL .. 23

FIGURE 9 - GATEKEEPER INFORMATION MODEL ... 24

FIGURE 10 - GK HEALTH INFORMATION MODEL .. 27

FIGURE 11 - CONCEPTUAL DIAGRAM OF THE GATEKEEPER THING MANAGEMENT SYSTEM (TMS). ... 29

FIGURE 12 - GATEKEEPER THING MANAGEMENT SYSTEM (TMS) INNER ARCHITECTURE. 29

GATEKEEPER – Platform overview

GATEKEEPER © 4

Abstract
Gatekeeper platform is a digital platform that provides AI and data-oriented services for
the development of health and care solutions.

Gatekeeper is based on the concept of digital twin where every platform asset, such as
devices, services, data or even if other platforms, has a digital replica that is described
with a Thing Description in agreement with Web of Thing standard specification.

Within Gatekeeper the Things are virtual entities that are, decoupled but linked with their
physical and/or technological implementation. Based on that at data level Gatekeeper
allows a high degree of separation between data owner (the physical owner of a
database for instance) from the data provider (the service that wraps the data into a
digital twin).

The Gatekeeper core data are the data related to the Gatekeeper users. Gatekeeper
users are developers and customers, nor patients neither healthcare professionals are
expected to be Gatekeeper user.

Anyway, when a developer builds an application by using Gatekeeper services he can
associate to several Gatekeeper services sensible data such as personal patients’
and/or healthcare professionals’ data. This data are private data owned by the
developers that Gatekeeper is hosting and for which is granting security and privacy
implemented into the platform and the deployment infrastructure. Data stored into the
Gatekeeper platform associated with a user are isolated from any other user.

Data belonging to a developer are only accessible and visible by that developer. For the
applications developed on the top of the Gatekeeper services, the developer is
responsible to implements the adequate privacy and security mechanisms to avoid data
breaches to his applications by using appropriate countermeasures.

Anyway, developers can rely on some core security and privacy services provided by
Gatekeeper that can help them to do this job, such as standard user management
services for custom authentication and authorization, secure connections and
communications provided by Gatekeeper infrastructure services, intrusion detection
systems (IDS) for network traffic generated by developers’ applications, etc.

Furthermore, Gatekeeper can provide to pilot developers some additional feature in
terms of a federation of their physical resources (not only data) into the Gatekeeper
platform.

The Gatekeeper platform by default is deployed into the data centre provided by HPE in
Rome. Such data centre provides both physical security (security personnel, access
control to the facilities, locks of the physical infrastructure) either IT security such as
above-mentioned services IDS, etc. Based on that, the storage and data extraction
operations are physically done into the HPE data centre.

GATEKEEPER – Platform overview

GATEKEEPER © 5

1 Architecture definition principles
This document describes GateKeeper reference architecture. The main goal is to help
the platform component owners to collaborate effectively, having a coherent view of the
platform as a whole, a detailed description of the main components needed for the
implementation of the GateKeeper platform and the interaction expected between
these components to satisfy the requirements coming from Technical Requirements as
well as Pilots (WP6), and other user requirements (WP2). In this first section we will
describe the defining principles that drive the design of the Gatekeeper Platform, then
we introduce the stakeholder of the platform and an overview of the target cloud
infrastructure, as well as security and privacy concerns.

1.1 Web of Things
Gatekeeper platform will be based on the Web of Thing (WoT) layered architecture
described in [4]. The main difference between the Gatekeeper layered architecture and
the WoT layered architecture relies on the inclusion of an additional layer that is devoted
to the implementation of the rules of governance of the platform that are applied to a
“Gatekeeper thing” through the release of a certification (Figure 1).

Figure 1 - Gatekeeper layered architecture

The different sets of policies are associated with a different kind of certificate, and when
a Thing obtains a specific certificate from the Gatekeeper Trust Authority (GTA), it means
that this Thing is compliant with the policies associated with the certificate.

Within GTA the policies will be in line to a common set of features that are related with:

▪ data access compliance with current regulation (e. g. GDPR compliance);

▪ alignment of data to the Gatekeeper semantic models;

GATEKEEPER – Platform overview

GATEKEEPER © 6

▪ compliance with standards (mainly Web of Things and FHIR);

▪ quality of provided data and/or services.

1.1.1 Principles for Gatekeeper data
The main objective behind the data governance inside the Gatekeeper platform is the
enhancement of data economy providing solutions for data interoperability and re-use in
machine learning (ML) and artificial intelligence (AI) algorithms ensuring data quality,
protection, privacy and security.

In order to reach this objective, several principles will be followed for Gatekeeper data:

1. Compliance with Findable, Accessible, Interoperable Reusable (FAIR) principles.

2. Open data as possible, and closed as necessary. Gatekeeper will always provide
access to data whenever possible;

3. Clear separation between data owner and data provider. Within Gatekeeper, data will
be treated as a Thing (digital twin of the data). So, interfaces in order to access data
should be defined as APIs. This means that the data provider should agree with the
data owner (e. g. physical database owner) on how and which subset of the data
should be made publicly available and/or which kind of restricted access should be
implemented.

4. Balancing the flow and wide use of data, while preserving high privacy, security,
safety and ethical standards. These features should be provided by data providers
and Gatekeeper will be able to certify its accomplishment through the Certification
Authority (GTA).

5. Allow the free flow of non-personal data, Gatekeeper will treat in a high permissive
way non-personal and non- sensible data. Less or no certification will be needed in
order to include these datasets as Things within the platform.

6. Provide rules for access to and use of data should be fair, practical and clear, with
clear and trustworthy data governance mechanisms in place; for an open, but
assertive approach to international data flows, data should flow within the EU and
across sectors.

7. Allow infrastructures that should support the creation of data pools enabling Big Data
analytics and machine learning, in a manner compliant with data protection
legislation and competition law, allowing the emergence of data-driven ecosystems.

8. Create an Artificial Intelligence ecosystems based on the concept of Gatekeeper
data space that will contribute to the HealthCare Data Space foreseen at European
level, with the objective of providing services (WP5) for early prevention and
intervention in 7 Medical Reference Use Cases (RUCs defined in WP6) in order to
improve the accessibility, effectiveness and sustainability of the healthcare systems.

GATEKEEPER – Platform overview

GATEKEEPER © 7

1.1.2 Gatekeeper Web of Thing based architecture
1.1.2.1 Description of the layered structure

The proposed structure of Gatekeeper Web of Things Platform architecture [5] will be
framed into a layered structure composed of: Access, Certify, Find, Share, Compose
layers as already shown in Figure 1.

Layer 1: Access, provide Accessibility of FAIR principle: This layer is responsible for
turning any Thing into a Web Thing that can be interacted with using HTTP requests just
like any other resource on the Web. A Web Thing is a REST API that allows to interact
with something in the physical world, like opening a door or reading a sensor located
somewhere in the world. In Gatekeeper this layer is provided by the Thing Management
System. The Thing Management System (TMS) is one of the core components dedicated
to the implementation of the functionality of access and find associated with the access
and find layer of WoT architecture. The TMS is like a broker service that publishes the
Gatekeeper things, each thing is decorated with a Web of Thing Description that is
available through a web based service. Within the TMS, the level of trustiness between
the things that are already connected to the platform is automatically managed. The
interaction between different things using thing descriptions is defined through an Web
of Things (WoT) interaction model. The thing description enables: (i) management of
multiple Things by a cloud service, (ii) simulation of devices/Things that have not yet
been developed, (iii) common applications across devices from different manufacturers
that share a common Thing model, (iv) combining multiple models into a Thing. In the
next sections, the web of things model will be presented to show the interaction model
and architecture of the Web of Things platform.

Layer 2: Certify, improve the FAIR principles with Trustability: This layer is specific to
the Gatekeeper platform against the Web of Thing layered reference architecture. It is
dedicated to build the concept of trustiness in the Gatekeeper platform through
certification and a way to securely share data across services. A Gatekeeper Thing is
different against a standard Thing because it has been certified by the Gatekeeper Trust
Authority (GTA). Within the Gatekeeper architecture the certify layer is enabled through
the interaction between the Things Management System (TMS) and the Gatekeeper
Trust Authority (GTA). Gatekeeper Trust Authority will provide the CERTIFY layer of the
GATEKEEPER architecture, while the Gatekeeper Marketplace will be in charge of
sharing the Gatekeeper things. The Trust creation will be managed using Blockchain
with the aim of having a decentralized trust system. As a decentralized system, it
removes the requirement for a trusted third party by allowing participants to verify data
correctness and ensure its immutability. Things can use blockchains to register
themselves and organize, store, and share streams of data effectively and reliably.

Layer 3: Find, provide Findability of FAIR principle: Giving accessibility via HTTP to
Things is a good option but it does not mean applications data or services can be easily
offered and/or consumed. This layer is dedicated to provide ways for easy discovery
and consuming of Things. In Gatekeeper it will be implemented through a Marketplace
that will provide things offered through the consumer space, the healthcare space and
the business space. Each space is oriented to a different type of market user. These core
features will be supported by the Networked things architecture that will provide the
reference model in home and health-oriented devices forming the GATEKEEPER
Platform’s Business Space. The ecosystem will be split into clear boundaries around 3
spaces, Business-to-Government (B2G), Business-to-Consumer (B2C) and Business-to-
Business (B2B).

GATEKEEPER – Platform overview

GATEKEEPER © 8

Layer 4: Share, provide Interoperability of FAIR principle: This layer will provide
functionalities by which someone can really “understand” what the Thing is, what data or
services it offers, and so on. Through these functionalities a Thing can not only be easily
used by other HTTP clients but can also be findable and automatically usable by other
WoT applications [6][7]. The approach here is to reuse web semantic standards to
describe things and their services. This enables searching for things through search
engines and other web indexes as well as the automatic generation of user interfaces or
tools to interact with Things. At this level, technologies such as JSON-LD (a language for
semantically annotating JSON) are in use. In Gatekeeper, all the Things will use as
communication language the Web of Things standard with JSON-LD contexts, including
FHIR standard and SAREF ontology.

Layer 5: Compose, provide Reusability of FAIR principle: This layer provides the
integration of data and services from heterogeneous Things into an immense ecosystem
of tools such as analytics software, mash-up platforms and developer platforms. Within
Gatekeeper the compose layer will provide all the intelligent services for early detection
and intervention and a developer platform where developers can compose Gatekeeper
things in order to provide advanced services.

All the data pushed from the Things that compounds the ecosystem to the platform will
be used by associated with Gatekeeper services, which will aim to create diagnostic and
prognostic algorithms, to help not only clinicians and domain experts to support their
decisions but also predictive and proactive services to help elderly people at home and
in their communities.

In order to build these services, techniques such as big data analysis or artificial
intelligence will be of particular importance given the wide range of possibilities they
provide. For instance, retrieving multiple datasets from multiple wearable devices could
be used to accurately predict possible life threatening diseases such as a stroke or heart
attack, thus helping to provide efficient fast assistance.

These early detection, prediction and proactive services for healthcare will be validated
in the pilot sites in order to populate the Consumer and Healthcare spaces within the
Gatekeeper Marketplace where these services will be available to third party users in
order to compose more advanced services through the open calls.

1.1.2.2 Web of Things (WoT) interaction model

Special mention must be given to the Web of Things interaction model which is
intimately related to the access layer and the Thing Management System (TMS). The
Object model used by the TMS and GTA, and it is composed of three layers: Binding
Templates, protocol bindings, and protocol stacks. This model would be an architecture
for the interconnection of the different layers of the Web of Things, integrating those
Things to the Web and in particular to HTTP, WebSocket, JSON and JSON-LD, using
TLS, DTLS, and/or OAuth to authenticate requests. Four main areas are considered
inside the Web of things interaction model: Protocols, Resources and Data Model and
Semantic Extensions. As seen in Figure 2, the TMS model follows a structured and
layered architecture where from the communication protocol, we move onto the TD,
then to the contextualized TD and the semantic web distribution.

GATEKEEPER – Platform overview

GATEKEEPER © 9

Figure 2 - Web of Things model [8]

Binding Templates are a reusable collection of templates used in communication with
other platforms. These templates are mapped together with the Protocol Bindings to be
used by the Protocol Stack as a guideline for implementation of the web services in
HTTP, WebSocket, and CoAP, with JSON and JSON-LD as data-interchange format.

In a large-scale way such as intended with the Gatekeeper Platform, Things pushing
data to the web can only happen if the data can be efficiently—and securely—shared
across services. This layer specifies how devices and their resources must be secured so
that they can only be accessed by authorized users and applications. For that purpose,
Things are internally configured in a way that it is divided into different layers with the
implementation, definition and communication, through binding templates.

Figure 3 - From Binding Templates to Protocol Binding [9]

1.1.3 Role of WoT Thing Description
The Thing Description (TD) is one of the key aspects of the WoT architecture and data
models. It allows things to be defined, communicate with each other and expose
information. In essence, the web of Thing Description is the entry point of a Thing, and
the thing description of the TMS is the point of access to the Gatekeeper ecosystem. It
can be understood as the nucleus of the Thing since it provides the functionality of the
interconnectivity to the Thing. A thing description consists of four components: (i) textual
metadata about the Thing itself; (ii) a set of Interaction Affordances that indicate how the
Thing can be used; (iii) schemas for the data exchanged with the Thing for machine-

GATEKEEPER – Platform overview

GATEKEEPER © 10

understandability, and,(iv) Web links to express any formal or informal relation to other
Things or documents on the Web.

An example of a WoT TD is shown in Example 1. Note that in general, the TD provides
metadata for different Protocol Bindings identified by URI schemes and security
mechanisms (for authentication, authorization, confidentiality, etc.)

Example 1: Temperature Event with subscription and cancellation. Extracted from [11]

{
 "@context": "https://www.w3.org/2019/wot/td/v1",
 "id": "urn:dev:ops:32473-Thing-1234",
 "title": "WebhookThing",
 "description": "Webhook-based Event with subscription and unsubscribe
form.",
 "securityDefinitions": {"nosec_sc": {"scheme": "nosec"}},
 "security": ["nosec_sc"],
 "events": {
 "temperature": {
 "description": "Provides periodic temperature value updates.",
 "subscription": {
 "type": "object",
 "properties": {
 "callbackURL": {
 "type": "string",
 "format": "uri",
 "description": "unsubscriber for Webhook.",
 "writeOnly": true
 },
 "subscriptionID": {
 "type": "string",
 "description": "Unique subscription ID for
cancellation",
 "readOnly": true
 }
 }
 },
 "data": {
 "type": "number",
 "description": "Latest temperature value"
 },
 "cancellation": {
 "type": "object",
 "properties": {
 "subscriptionID": {
 "type": "integer",
 "description": "Required to cancel subscription.",
 "writeOnly": true
 }
 }
 },
 "uriVariables": {
 "subscriptionID": { "type": "string" }
 },
 "forms": [
 {
 "op": "subscribeevent",

GATEKEEPER – Platform overview

GATEKEEPER © 11

 "href":
"http://192.168.0.124:8080/events/temp/subscribe",
 "contentType": "application/json",
 "htv:methodName": "POST"
 },
 {
 "op": "unsubscribeevent",
 "href":
"http://192.168.0.124:8080/events/temp/{subID}",
 "htv:methodName": "DELETE"
 }
]
 }
 }
}

In Example 1, a Thing Description is shown to represent a Webhook event. The context
definition in this case has included HTTP protocol bindings supplements. The TD doesn’t
have security as defined in “securityDefinitions” and “security” fields. The TD provides an
Event affordance called “temperature” that updates its latest temperature value to the
consumer. It sends a POST request to a callback URI that is provided by the consumer.
The “subscription” defines two properties, one is a write-only parameter called
“callbackURL” that must be submitted through the subscribeevent. The other property,
“subscriptionID” is read-only and returned by the subscription. In case of subscription the
Thing would send periodically its state through a POST to the callback URI using “data”
form defined structure. To unsubscribe, the “unsubscribeevent” form must be submitted,
this form makes use of a URI Template to specify the subscription to cancel. The
uriVariables member functions as a note to the consumer to include its contents.
Alternatively, the member “cancellation” can be used to unsubscribe in a similar way to
“subscription” and combine it with a subscribeevent form.

For the Thing Description the use of JSON-LD is crucial as it is a lightweight Linked Data
format for linking data with vocabularies that describe the semantic of the data. Another
important aspect of the JSON-LD data format is its human readability. It is based on the
already existing JSON format and provides a way to help JSON data interoperate at
Web-scale through the concept of context. JSON-LD is an ideal data format for
programming environments, REST Web services, and unstructured databases such as
CouchDB and MongoDB, although it also gives very useful functionalities to Web of
Things. A simple example of a JSON-LD is shown in Example 2. The use of the contexts
allows JSON-LD to map data.

Example 2: Example of a JSON-LD. Extracted from [10]

{
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}

Example 2 shows a simple JSON-LD where the context links the data structure of the
JSON with the concept of Person of the ontology friend of a friend (FoaF) described in
the URI https://json-ld.org/contexts/person.jsonld. Based on such context the terms

GATEKEEPER – Platform overview

GATEKEEPER © 12

"Name", "born" and "spouse" have a clear semantic meaning and can be understood by
machine and humans.

The vocabulary of the Thing description is divided into: core, data schema, WoT security
and Hypermedia Controls vocabularies. The interaction models between things,
conceptual basis of the processing of thing descriptions and their serialization.

The Thing Description information [11] model is built in:

▪ Core vocabulary, which reflects the Interaction Model with the Properties,
Actions, and Events Interaction Affordances.

▪ Data Schema vocabulary, including (a subset of) the terms defined by JSON
Schema.

▪ WoT Security vocabulary, identifying security mechanisms and requirements for
their configuration.

Hypermedia Controls vocabulary, encoding the main principles of RESTful
communication using Web links and forms.

The vocabularies introduced before are the main parts of the TD information model,
then, the elements that put together all the things, i.e. platforms, wearables, web
services. Therefore, they must be understood in order to create a framework based on
this paradigm.

A Thing defined as a Thing Description includes the following properties fields: context,
type, id, title, description, properties, actions, events, forms, security and security
definitions, among others. In Table 1, a compilation of all the fields that are included in
the Thing Description is shown.

Table 1: Core vocabulary of Thing Description [11]

Vocabulary
term

Description Assignment Type

@context JSON-LD keyword to define short-hand
names called terms that are used
throughout a TD document.

mandatory
anyURI or Array

@type JSON-LD keyword to label the object with
semantic tags (or types).

optional
string

id Identifier of the Thing in form of a URI
RFC39861 (e.g., stable URI, temporary and

optional
anyURI

1 Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet
Standard. URL: https://tools.ietf.org/html/rfc3986

GATEKEEPER – Platform overview

GATEKEEPER © 13

Vocabulary
term

Description Assignment Type

mutable URI, URI with local IP address,
URN, etc.).

title Provides a human-readable title (e.g.,
display a text for UI representation) based
on a default language.

mandatory
String

titles Provides multi-language human-readable
titles (e.g., display a text for UI
representation in different languages).

optional
MultiLanguage

description Provides additional (human-readable)
information based on a default language.

optional
string

descriptions Can be used to support (human-readable)
information in different languages.

optional
MultiLanguage

version Provides version information. optional
VersionInfo

created Provides information when the TD instance
was created.

optional
dateTime

modified Provides information when the TD instance
was last modified.

optional
dateTime

support Provides information about the TD
maintainer as URI scheme (e.g., mailto
RFC60682, tel RFC39663, https).

optional
anyURI

base Define the base URI that is used for all
relative URI references throughout a TD
document. In TD instances, all relative URIs
are resolved relative to the base URI using
the algorithm defined in RFC3986.
base does not affect the URIs used in
@context and the IRIs used within Linked
Data4 graphs that are relevant when
semantic processing is applied to TD
instances.

optional
anyURI

properties All Property-based Interaction Affordances
of the Thing.

optional
Map of

PropertyAffordance

2 The 'mailto' URI Scheme. M. Duerst; L. Masinter; J. Zawinski. IETF. October 2010. Proposed Standard. URL:
https://tools.ietf.org/html/rfc6068

3 The tel URI for Telephone Numbers. H. Schulzrinne. IETF. December 2004. Proposed Standard. URL:
https://tools.ietf.org/html/rfc3966

4 Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL:
https://www.w3.org/DesignIssues/LinkedData.html

GATEKEEPER – Platform overview

GATEKEEPER © 14

Vocabulary
term

Description Assignment Type

actions All Action-based Interaction Affordances of
the Thing.

optional
Map of

ActionAffordance

events All Event-based Interaction Affordances of
the Thing.

optional
Map of
EventAffordance

links Provides Web links to arbitrary resources
that relate to the specified Thing
Description.

optional
Array of Link

forms Set of form hypermedia controls that
describe how an operation can be
performed. Forms are serializations of
Protocol Bindings. In this version of TD, all
operations that can be described at the
Thing level are concerning how to interact
with the Thing's Properties collectively at
once.

optional
Array of Form

security Set of security definition names, chosen
from those defined in securityDefinitions.
These must all be satisfied for access to
resources.

mandatory
string

or Array of string

securityDefin
itions

Set of named security configurations
(definitions only). Not actually applied
unless names are used in a security name-
value pair.

mandatory
Map of
SecurityScheme

The Thing Description offers the possibility to add contextual definitions in some
namespace. This mechanism can be used to integrate additional semantics to the
content of the Thing Description instance, provided that formal knowledge, e.g., logic
rules for a specific domain of application, can be found under the given namespace. The
contextual information also specifies some configurations and behaviour of the
underlying communication protocols declared in the forms field.

Web of Things use of Thing Description is similar to OpenAPI although there are
important differences.

▪ In terms of security, while the HTTP security schemes, Vocabulary, and syntax
given in this specification share many similarities with OpenAPI, they are not
compatible, making this a big challenge for harmonizing OpenAPI with Web of
Thing.

▪ While OpenAPI is an open specification standard for exposing an API with a set of
rules, the thing description is a standard that is more general it allows to expose a
thing, being understood as a device, service, platform or whatever.

▪ OpenAPI does not support semantic annotation while Web of Thing description is
allowing the inclusion of contexts with JSON-LD that are used for describing the
semantic of the data within the Thing Description.

GATEKEEPER – Platform overview

GATEKEEPER © 15

1.1.4 Role of FHIR and relation with Thing Description
FHIR will be a core concept within Gatekeeper. It is a very mature standard provided by
HL7, commonly used in the healthcare domain around the world with a wide community
of developers and adopters. Details on FHIR will be provided in the D3.4 and D3.5 but for
understanding how it will be used within Gatekeeper some basic notions will be
provided.

FHIR is a REST-ful based approach for modelling data structures as Healthcare
Resources and services as REST-APIs in order to provide a solution for health
interoperability. Furthermore, it addresses the semantic health interoperability between
healthcare centre providing a dynamic standardized approach for the definition of the
terminology used within a healthcare centre. In a very smart way it is solving semantic
interoperability between different healthcare centres standardizing the rules that allow
terminology inconsistency between them. When an adopter would use FHIR it should
define a FHIR Profile Resource where is defined the health terminology (e. g. SNOMED-
CT, ICD, LOINC, etc.) used by the adopter. In this way 2 different adopters will differ at
semantical level only in the definition of their profiles and interoperability could be
reached by mapping of the terminologies used in their Profile Resources. The definition
of a FHIR implementation guide and Gatekeeper FHIR profiles will be the based for the
Gatekeeper healthcare data space.

Apart of Profile resources, FHIR also provides Conformance Resource. This resource is a
description of the services (signatures, profiles, data exchanged, allowed parameters,
etc..) provided by each endpoint of the FHIR implementation.

In the context of Gatekeeper, a FHIR Conformance Resource is the same of a Things
Description because it is describing the whole set of services included within the FHIR
implementation. So, we need to avoid an unnecessary overwriting of functionalities and
find a way that Thing Description and FHIR conformance resource can coexist within the
platform. In this case the solution for the integration of both approaches is to integrate a
FHIR Conformance Resource within a Thing Description by linking the endpoint that is
providing the Conformance Resources as showed in the following example:

Example 3: FHIR Conformance Resource in the Thing Descriptor

{
 "@context": [
 "https://www.w3.org/2019/wot/td/v1",
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "FHIRServer": {"@id": "td:Thing"},
 "conformance": {"@id": "xsd:anyURI"}
 }
],
 "@type":"FHIRServer",
 "title": "Gatekeeper pilot x FHIR server",
 "description" : "A FHIR server implementation",
 "securityDefinitions": {
 "no_sec": {
 "scheme": "nosec"
 }
 },
 "security": [
 "no_sec"
],
 "conformance": "http://hapi.fhir.org/conformance?serverId=home_r4"

GATEKEEPER – Platform overview

GATEKEEPER © 16

}

1.2 Gatekeeper Platform Stakeholders
Stakeholders that are interested in the results of the Gatekeeper project can be
differentiated of two types: the platform stakeholders, who interact and use the
software, and project stakeholders, who are the ones who do not interact directly with
the solution but are somehow affected by it.

This deliverable tries to combine the analysis of D2.3 and the domain knowledge
expressed in D6.2, with a specific focus on platform stakeholders to identify them and
the role they cover in the usage of the platform.

Figure 4 - Gatekeeper platform stakeholders

BUSINESS ACTOR

Extends: GK Actor (Abstract)

Description: Generic stakeholder of the Business space. He/she is the provider of
marketable solutions that integrate with the GK platform

Concrete Implementers: Medtech Companies, Developers, IoT or HC Device providers

TECHNOLOGY DEVELOPER

Extends: Business Actor

Description: Develops solutions that exploit the existing Gatekeeper services

Concrete Implementers: Solution developer

COMPANY

Extends: Business Actor

Description: Produces and markets health and wellbeing KETs

Concrete Implementers:

GATEKEEPER – Platform overview

GATEKEEPER © 17

POLICY MAKER

Extends: GK Actor (Abstract)

Description: Administrator of the GK Platform. Manages the governance policies of the
regulating the platform

Concrete Implementers: Governments, HC Systems

HEALTHCARE PROFESSIONAL

Extends: GK Actor (Abstract)

Description: A Professional Caregiver is a person who provide care to those who need
supervision or assistance in illness or disability. They use Gatekeeper technology and
solutions to assist person or citizen

Concrete Implementers: General Practitioner, Nurse, Pharmacist

CITIZEN

Extends: GK Actor (Abstract)

Description: Citizen represents people who might be interested in the results of
GATEKEEPER Interventions, directly (in the case of patients) or indirectly (for Caregivers).
They consume health services.

Concrete Implementers: Patients, Informal caregivers

PATIENT

Extends: Citizen

Description: A Patient is a person receiving or registered to receive medical treatment.
He/she is the owner of personal health and wellbeing data

Concrete Implementers: Elderly Citizen, Patients with co-morbidities.

CAREGIVER

Extends: Citizen

Description: Provides formal or informal care to one or more Elderly Citizens

Concrete Implementers: Assistant, Social Worker, Family Memeber

1.3 Security and Privacy considerations
The conceptual approach of the Security and Privacy module of GK follows the
principles of the Reference Model of International Data Space Association. The
trustworthy Architecture focuses on exploiting and sharing things from various sources
in any type of scenarios, including cross-border cases. The Security and Privacy
framework leverages existing standards, technologies and established governance
models, to facilitate secure and standardized data exchange and data linkage in trusted
ecosystems.

In detail, security and privacy considerations will be ensured by five main architectural
elements: a) the User management, b) the Certification Authority, c) the Dynamic
Attribute Provisioning, d) the Thing Action Tracking / Audit and e) the Clearing House
(exposed as Thing).

The Certification Authority (CA) is responsible for issuing, validating and revoking digital
certificates. A digital certificate is provided for a user and a thing based on the validation

GATEKEEPER – Platform overview

GATEKEEPER © 18

mechanism. The Validation is implemented based on standardisation methods that will
be delivered by T8.1.

The Dynamic Attribute Provisioning Service (DAPS) includes master data and information
on security profiles. Since the CA provides the details on the digital certificate, the
participant registers at the DAPS. Then the User Management mechanism identifies the
validated users and gives permissions for the trusted to access the GK platform.
Furthermore, the validated things are delivered to the TMS system. DAPS is also
responsible for the management of dynamic consents and FAIRification Principles of
Things.

Dynamic Trust Monitoring (DTM) is necessary for classification of the trustworthiness of
all participants in the ecosystem. DTM implements a monitoring function for everything
and shares information with the DAPS to notify on the trustworthiness of the
transactions. Furthermore trails of all transactions related to things, maintaining a
detailed history of the whole thing lifecycle.

The Clearing House logs all activities performed in the course of a data exchange. After
a data exchange, or parts of it, has been completed, both the Data Provider and the Data
Consumer confirm the data transfer by logging the details of the transaction at the
Clearing House. The logging information can also be used to resolve conflicts. The
Clearing House also provides reports on the performed (logged) transactions for billing,
conflict resolution, etc. This task is responsible for the adoption of FAIRification principles
after a thing is consumed. Thus the Clearing House will be also exposed as a thing and
delivered to the end-users of the GK platform.

1.3.1 Infrastructure security
In order to address security and privacy issues, the Gatekeeper Data Centre
infrastructure managed by HPE uses a number of technologies, products and services:

• VPN access, by means of OpenVPN open source software. Two kinds of VPN profiles
are available:

o Road warrior, for Gatekeeper partners users, supporting on-demand
connections from PC clients

o Site-to-site, for Gatekeeper pilots, supporting always-on connections from
Pilot sites

• Support for different VPN access authentication types:

o Single Factor (user and password)

o Two Factor Authentication (2FA)

o Multi Factor Authentication (Client Certificate + Password + OTP)

• Firewall devices and policies. They are used to determine whether a given user/pilot
can access a network or a Gatekeeper service

• Security services. They are managed by HPE and include:

o Identity Management: user identities to access services (e.g. VPN, servers,
VMs) are centrally managed by HPE

o Public Key Infrastructure (PKI): HPE manages an internal private Certification
Authority that releases digital certificates (e.g. for VPN user access or internal
web sites/services) and manages their lifecycle (e.g. revocation)

o Intrusion Detection System (IDS): a service to block malicious attacks based
on security rulesets

GATEKEEPER – Platform overview

GATEKEEPER © 19

o Proxy Server: access to the Internet from HPE Data Centre is controlled and
filtered via an HTTP Proxy Server

o Log Management: all devices (e.g. operating system, backup, switches,
firewalls, etc.) are traced, and logs are kept in a Log Management system for
security purposes

GATEKEEPER – Platform overview

GATEKEEPER © 20

2 GATEKEEPER Architecture
2.1 Logical Architecture
This section highlights the context and role of GateKeeper platform by giving an
overview of the platform as a whole and the roles of the single components.

The following figures highlight the context of the Gatekeeper platform by means of
functionals views. Components colors highlight their role. Pink components represent
Core Pltform Things (from WP4), blue components are Integrated Dynamic intervention
Things (WP5), while yellow components represent External things that can interact with
the platform and respond to sepcific needs of Pilots or in general respond to specific
application requirements. The solid arrows demonstrate the main flows of the significant
data managed by the Platform.

The dashed arrows in the figues demonstrate the significant interactions of stakeholders
that trigger the main data flows. For clarity, we split such flows to hilight the ones that
concern the Business and Transactions spaces and the ones that emerge from the use in
the Consumer and Healthcare spaces. A detailed description of the actors involved can
be found in Section 1.2. The role of the Platform components is described in more
details below, but the flows can be summarized in the following coarse grained
sequences:

1. The Policy Maker manages the platform by moterating the MarketService content
and managing the security and privacy policies in the Trust Authority (Transaction
space)

2. Developers integrate the Platform serivices in customer solutions or develop new
Things to be integrated in the platform. Business actors (Developers, but also
Companies) publish new offerings of Things in the Marketplace, (Business space)

3. Sensor data produced along the execution of activities/exercises by the patient are
fed (collected in connectors or directly) to the platform together with data from
EHRs. Data are federated in the platform and processed by Dynamic Intervention
services. Data and results are visualized by Healthcare professionals and Patients
using the registered applications (Consumer and Healthcare spaces).

Figure 5 –Gatekeeper Architecture view - Business and Transaction spaces

GATEKEEPER – Platform overview

GATEKEEPER © 21

In all contexts of usage the Things Management System functions as the entry point of
the GateKeeper platform. It manages Things (devices, services, platform or other assets
to be operated as an individual elements) represented as Thing Descriptors, following
the Web Of Things approach (Section 1.1). It keeps a registry of such Things in the Thing
Directory and also acts as an API Gateway mediating any interaction between Things
and their consumers using the policies set by the Trust Authority.
Such policies and usage rights are managed by the Policy Maker, who administers the
Platform ensuring laws and regulations are enforced by such policies, and supervises
registered users and things.
The Trust Authority is the component that is responsible to enforce such policies and
act as a Certification Authority for Things. It applies certification tests to the Things
ensuring that a thing respects the rules of the different GateKeeper Thing profiles
(medical device certification, interoperability with standards, GDPR compliance, etc). The
Trust Authority also checks authorization rights for the access to services and data
throughout the platform.
The GateKeeper Marketplace is the single-entry point for all users to explore,
conceptualize, test and consume the added value services they are interested in. It will
allow a uniform access to the Things ecosystems and will acheive interoperability by
enabling service/application exchange between deployment sites, third-parties, etc. For
developers in particular, it will provide a Developer Portal allowing to find development
and deployment material in order to publish applications and services. It will also deploy
applications/services to the cloud or on premise at ease.
Developers will be also supported by the Authoring Tool to build and integrate UI easily
in their solutions.

Figure 6 –Gatekeeper Architecture view – Consumer and Healthcare spaces
Health and environmental data that are processed by platform can come from data
connectors or devices provided by pilots or companies and are registered and certified
in the platform as Things, or even directly accessed from EHRs. GateKeeper Platform
already provides two types of connectors:
The Intelligent Medical Device Connector, that allows to access device measurement
data regardless of their differences in inferfaces or connection protocols, and
homogenize their data format; the Multi robot connector, the connector that allows to
interact and get information from robots.
GateKeeper Data Federation service is responsible to integrate and federate data
coming from the different sources. It provides a set of southbound interfaces to connect
to the different data providers. Data can be sent explicitly by the connectors and devices

GATEKEEPER – Platform overview

GATEKEEPER © 22

exploiting the provided rest interface or be configured to periodically read data from
EHR or other data sources.
Using semantic models, data are transformed in a unique format, the GateKeeper FHIR
Data Profile, and made available to the rest of the GateKeeper Platform and all Things
authorized to access them.
Data integrated in the data federation are also pushed to the Big Data Infrastructure,
where they can further processed and merged with external data sources.
The infrastructure will provide services to preform Big Data analysis and generic models
that can be exploited from the other services registered in the platform as Things.
In the plaform will be also available two processing services: the AI Personalized Risk
Detection & Assessment, that will provide diagnostic and prognostic algorithms that can
help both professionals to support their decisions and elderly with no technical
knowledge to improve their independency and ability over the time; Home and Health
Activity Monitoring that can combine Personal Health Background and Environmental
Measurements, mapping of daily activities and environmental threats at home, to
identify and notify abnormal conditions.
Following figure 16 shows the UML domain model associated to the Gatekeeper
platform.

 GATEKEEPER – Platform overview

GATEKEEPER © 23

Figure 7 - High level UML Domain Model

 GATEKEEPER – Platform overview

GATEKEEPER © 24

3 Information Model
The Information Model shown in the diagrams below describes the main types of data
exchanged between the Gatekeeper components.
The Information Model described focuses on two aspects: entities, and their
relationships, directly used as input and output parameters of the operations provided
by components (listed in section 4); an initial entity diagram that represents the Health
related measurements used by pilots, as gathered by the analysis of D6.2, that will be
the basis of the work of tasks 3.4 and 3.5 for the creation and formalization of a unified
Gatekeeper semantic model.

Figure 8 - Gatekeeper Information Model

 GATEKEEPER – Platform overview

GATEKEEPER © 25

The reported Information Model (Figure 8) focuses on data involved in the component
interactions defined so far in the project. The model will be continuously enriched with
new entities, when the interfaces of the components will be further defined.

The main data type for this platform is the ThingDescriptor described in detail in section
1.1.3. It contains descriptions of all services and things (sensors, Devices) that by invoking
their actions can produce or elaborate health data (Measurements) in the platform.

To regulate the access to the ThingDescriptor, and perform actions, the Trust Authority
links to the TD a set or authorized Roles. Roles are assigned to registered Users and they
obtain AuthorizationTokens to prove their identities.

A thing is referred in the MarketService by means of the Offering entity. This entity is the
representation of all added value services exposed by the Gatekeeper Platform. When
an Offering describes a software service or device that can be connected to the GK
platform, it links to its ThingDescriptor.

The IntelligentMedicalDeviceConnectors thing can manage Devices, representing sensors
that generate Measurements of patients status. Devices belong to Organizations. Devices
and their measurements can be accessed by Users with different Roles.

Measurements represent the Health data managed by the platform. They refer to
Measure types, of a variety of health related aspects. An initial set of Measures obtained
by the analysis of Pilots is detailed in the next section.

All Measurements the platform manages are collected from connectors in a variety of
formats (the task dealing with the identification of such formats is T3.4) and being
translated in a homogeneous format to federate them and allow a homogeneous
access. The target format will be formalized in the Gatekeeper FHIR profile, output of
T3.5.

Federated data can be visualized using the services of the AuthoringTool that uses
DashboardConfigs to customize views on the Measurements.

Data are also processed by Dynamic Intervention services that take as input
DataTrajectories and by the use of AI algorithms can produce Risk assessments or
Predicted Trajectories. Details on the input and output requirements for such services is
detailed in section Error! Reference source not found..

3.1 Health Measures
Although details on the work of mapping input measures and their formats from pilots
and defining a unique Gatekeeper FHIR profile that is able to represent them is a joint
work of T3.4 (for the concepts identification and mapping) and T3.5 (for the definition of
the FHIR profile), here we give an initial overview of health measure types that the
platform will manage.

Figure 9 show the result of the analysis of the list of measures required by pilots as
reported in D6.2. Measures that the Gatekeeper platform will have to manage
comprehend Vital Signs (such as Body Temperature, ECG, Respiratory Rate), as well as
data on the patient Activity or other parameters as Glucose or Sweat level.

A specific value in time of a Measure is captured by the Measurement entity, that
describes a Measure, its value, the patient identifier and the time it was captured.

Measurements are first categorized based on the way they are captured. They can be
AuomaticMearurements, produced by HealthEvents, or ManualMeasurements coming
from the QuestionnaireResponses of Questionnaires of self assessment or interviews with
professionals.

 GATEKEEPER – Platform overview

GATEKEEPER © 26

HealthEvents can be generated from Devices or be the result of the data processing of
Dynamic Intervention Services. In the latter case they are referred as Risk Events.

Questionnaires can cover a variety of topics, from Helthy Habits, to Cognitive Impairment,
Dependencies, Medications or Emotional Situation.

3.1.1 Gatekeeper FHIR profile
A FHIR profile is a set of rules which allows a FHIR resource to be constrained or include
extensions so it can add additional attributes. T3,5 will take as input all the information
on relevant Resources to be included in the profile (output of T3.4), and formalize a
Gatekeeper FHIR profile to ensure data will be semantically interoperable. The profile
will be based on v4 of FHIR [14].

The translation from the original format to the GK FHIR profile will be performed by the
Gatekeeper federation component, that will also provide a FHIRv4 compliant database
to store the translated data and make them available for the rest of the platform.

 GATEKEEPER – Platform overview

GATEKEEPER © 27

Figure 9 - GK Health Information Model

GATEKEEPER – Platform overview

GATEKEEPER © 28

4 GateKeeper Components
In this document the components reported below are considered as black-box and, as
such, no information is reported about their internal architecture which is documented in
other deliverables. The following table provides a guide of the context where these
components are provided and thus documented.

Table 2: Components list overview

Component Name Responsible Task

Things Management System UPM 4.2

Things Directory UPM 4.2

Error! Reference source not found. HPE 4.3

GK-IntegrationEngine ENG 4.4

GK-FHIRServer ENG 4.4

RDF Semantic Data Lake ENG 4.4

Trust Authority CERTH 4.5

Error! Reference source not found. CERTH 4.6

Error! Reference source not found. SAMSUNG 5.2

Error! Reference source not found. MYS 5.3

Error! Reference source not found. MEDISANTE 5.4

Error! Reference source not found. TECNALIA 5.5

Error! Reference source not found. OU 5.6

For the first release of the platform only components highlighted in gray in table 2 will
be provided.

4.1 Things Management System
The Things Management System (TMS) is the entry point of the GateKeeper platform. In
analogy to a classical microservices architecture it is like an API gateway component.
The TMS will not manage directly REST-API like a common API Gateway but it will
manage Things represented as Thing Descriptor. A representation of this functionality is
shown in Figure 10, and it is based on the intermediary architecture described in the
Web of Things architecture specifications (https://www.w3.org/TR/wot-architecture/).

https://www.w3.org/TR/wot-architecture/

GATEKEEPER – Platform overview

GATEKEEPER © 29

Figure 10 - Conceptual Diagram of the GateKeeper Thing Management System
(TMS).

The Thing Management System is the intermediate in any interaction between things
and consumers. We define thing as any device, service or platform that is standardize
with a model of data to be operated as an individual element derived from a set of
predefined templates like smart light-bulbs, smartwatches, AI service or marketplace
analytics platform. In Figure 11 it can be seen the inner architecture of Thing
Management System and its components.

Figure 11 - GateKeeper Thing Management System (TMS) inner architecture.

In the architecture of the GateKeeper Thing Management System, it can be identified the
following components:

▪ GTA: GateKeeper Trust Authority (T4.5), it manages authentication and authorization
of users in order to consume things

▪ Thing Descriptor (TD) – descriptor of the thing compliant with WoT object model and
GK semantics (T3.3, T3.4).

▪ API - GW – Gateway for RESTful interfaces (or other protocols) of GK services

▪ Proxy: Redirect requests to different microservices (only for REST interfaces)

▪ Builder: Interact with GTA for building and register new endpoints

▪ Thing Directory TMS – TD – Directory that collect all GK Things

▪ It’s the WoT Runtime (e. g. ArenaWebHub) It should provide access to
standardized URL for properties, actions, events like Mozilla does

▪ MSx: Microservice x providing service x as REST API

Things directory

Thing
Directory

DB
Service

GTA

MS1

MSn

Proxy

Endpoints Builder

Authorize

Register MS as Things

Expose

Register
Endpoints

Register Endpoints

Certify
MS
As a

Thing

API - GW

Manage Endpoints
Manage

the access
For clients

GATEKEEPER – Platform overview

GATEKEEPER © 30

Two use cases have been described for the analysis of the components and
functionalities that must be considered for the definition of the interfaces: (i) first use of a
thing and (ii) normal use of the thing.

The first use case, which is shown in Error! Reference source not found., represents the
interaction between the user and the platform for the first time that the thing is used.
Since in the first use case it is needed to ask for an authorization and certify the
component. In the second use case (Error! Reference source not found.), the
component is already recognizable by the GateKeeper Trust Authority and used directly
thought the right permission.

ThingManagementService Provided Interface

access() : anyURI

Ask to the TMS for the access to the thing.

Input(s) --

Output thing:anyURI Thing Descriptor of the TMS with security
definition (e. g. Bearer authentication)

registerForUser(String): anyURI

Register a Things for the user

Input(s) thing:String The serialized Thing (see section 1.1.3) to register

Output thing:anyURI Thing Descriptor of the TMS with security
definition (e. g. Bearer authentication)

getTMSDescriptor(String): anyURI

Ask to the TMS for the Thing Descriptor

Input(s) thingDescriptor:
String

The serialized Thing (see section 1.1.3) to grant
access to

Output thing:anyURI Thing Descriptor of the TMS with security
definition (e. g. Bearer authentication)

verifyUserCredentials(String, String) : String

Users send credentials for authentication

Input(s) username:String Username

password:String Password

Output jwt:String A JSON Web Token to allow the access to the
platform

discoverThing(String): anyURI

Request the list of things to TMS

Input(s) thingDescriptor: The serialized Thing (see section 1.1.3)

GATEKEEPER – Platform overview

GATEKEEPER © 31

String

Output thing:anyURI Thing Descriptor

consumeTMS (thingID): anyURI

Request one thing to TMS

Input(s) thing ID The ID of the requested Thing

Output thing:anyURI Thing Descriptor

ThingManagementService Requested Interface

Provider Method Description Input Output

TrustAuthority

RegisterInGTA() Register a
Things in the
GTA

String

Thing Descriptor

AnyURI: Thing
Descriptor

verifyCredentialsIn
GTA ()

User send
credentials for
authetication

String:
Username,
String: Password

String: Json Web
Token

Thing Directory

discoverThingInTD(
)

Request the list
things in Thing
Directory

String

Thing Descriptor

AnyURI: Thing
Descriptor

RegisterInThingDir() Register a
Things in the
Thing Directory

String

Thing Descriptor

AnyURI: Thing
Descriptor

consumeTD() Request one
thing to Thing
Directory

Thing/<id> AnyURI: Thing

Descriptor

Consume() Ask the new
create thing to
the thing
directory

String

Thing Descriptor

AnyURI: Thing
Descriptor

update() upload the
endpoint of the
Thing
Descriptor to be
accessed by
the gateway

String

Thing Descriptor

AnyURI: Thing
Descriptor

MSx ConsumeActionInM
S()

Consume an
action on a
thing in its
Micro Service.

Thing/<id>/actio
n

Object

GATEKEEPER – Platform overview

GATEKEEPER © 32

4.2 Things Directory
Description of the component

ThingsDirectory Provided Interface

discoverThingInTD(String): anyUri

Request the list things in Thing Directory

Input(s) String Filter

Output [anyUri] List of url of the selected things

RegisterInThingDir()

Register a Things in the Thing Directory

Input(s) string Thing Description

Output bool State of success

consumeTD()

Request one thing to Thing Directory

Input(s) AnyURI ID of the thing the consume

Output String The associated thing description

Insert()

Ask the new create thing to the thing directory

Input(s) Thing
Description

The thing Description of the new thing to insert

Output bool State of success

Update()

upload the endpoint of the Thing Descriptor to be accessed by the gateway

Input AnyURI Thing ID of the thing to modify

Input(s) string New thing description

Output bool State of success

Delete()

Consume an action on a thing in its Micro Service

Input(s) AnyURI Thing ID of the thing to modify

Output bool State of success

GATEKEEPER – Platform overview

GATEKEEPER © 33

4.3 GK-IntegrationEngine
The GK-IntegrationEngineis the component able to convert raw data, coming from
different data sources EHR, sensors, iot devices, wearables etc.), in HL7/FHIR v4.0.1 and
RDF representation. Data can be sent to this component invoking the REST APIs that it
exposes. For IOT, it accepts as input data in the formats XML, JSON and CVS and
provides as output their representation in rdf. The rules for the transformation are written
with the language RML using the terminologies provided by the task T3.4. Transformed
data is sent to the component RDFSemanticDataLake.

For electronic health record, it converts custom EHR into FHIR v4.0.1 representation
according the GK FHIR profiles defined in the task T3.5. Data can be sent to this
component invoking the REST APIs that it exposes. GK-IntegrationEngine accepts as
input data in the formats XML and JSON and provides as output their representation in
FHIR standard (JSON/FHIR). The terminologies to be used for the conversion is provided
by the task 4.4. Finally transformed data is sent to the component GK-FHIRService.

IGK-IntegrationEngine Provided Interface

create(pilot: String, sensorId: String, data: File): responseBody: String

Interface accepting data in XML/JSON/CVS format coming from IOT devices (or
connector services). If a FHIR processor has been preliminary registered for that
device/service, data will be converted and persisted in a FHIR R4 repository. The data
will be also converted in RDF and made available in to RDFSemanticDataLake
component. If the registered converter produces data complaint to other ontologies
(e.g. SAREF) then they will be loaded only in RDFSemanticDataLake repository.

In order to select the appropriate rules to be applied for the transformation, this
method accepts as input the name of the pilot, the id of the sensor and a file
contacting data.

[POST method]

Input(s) pilot: String The name of pilot. Knowing the
name of the pilot this method can
apply the right transformation for
each pilot. Note that each pilot uses
a different data schema

sensorId: String The id of the sensor. The main goal
of this parameter is to select which
converter rules should be applied to
the data. The pair pilot+sensorId
allows to select the specific
transformation rules for the data

data: String Actual raw data that must be
transformed in RDF and sent to
RDFSemanticDataLake. The format
of the data can be JSON, XML and
CSV. In order to write the rules for
the conversion in RDF, it is necessary
to know the schema of

GATEKEEPER – Platform overview

GATEKEEPER © 34

JSON,XML/CSV.

Output String data in the new format (XML od
JSON)

create(pilot: String, data: String): responseBody: String

Transforms data in FHIR representation and sends it to GK-FHIRServer component. It
returns the output of operation returned by the GK-FHIRServer together with the HTTP
codes describing the execution outcome.

This component defines and implements specific conversion rules for each type of
data of each use case. In order to select the appropriate rules to be applied for the
transformation, this method must know the name of the pilot to which data belong to.

[POST method]

Input(s) pilot: String The name of pilot. Knowing the
name of the pilot this method can
apply the right transformation for
each pilot. Note that each pilot uses
a different data schema

data: String {json/xml} Actual raw data that must be
transformed and persisted in the
GK-FHIRServer. In order to perform
the rules for the transformation in
FHIR standard, the structures of the
data should be known.

The format of the data can be JSON
or XML. In order to write the rules for
the conversion in FHIR standard, it is
necessary to know the schema of
JSON/XML.

Output responseBody: String Operation outcome returned by the
FHIRServer in JSON/XML format
together with the HTTP code that
provides feedback about execution
outcome.

IIOTSemanticMappingService Requested Interface

Provider Method Description Input Output

RDFSemanticDat
aLake

create(rdfData:
String):
HTTPResponse

Persist
transformed
data (RDF) into
RDFSemanticDat
aLake. POST

rdfData: String HTTPResponse

GATEKEEPER – Platform overview

GATEKEEPER © 35

GK-FHIRServer

create (resource:
Bundle): Bundle

Send to the GK-
FHIRServer raw
data (belonging
to the pilot)
transformed in
FHIR standard. It
is required that
the GK-
FHIRServer
implement all the
operation
defined in the
FHIR standard.
https://hl7.org/F
HIR/http.html#o
perations. POST

resource: Bundle Bundle

4.4 GK-FHIRServer
The GK-FHIR-Server is a component implementing the HL7/FHIR v4.0.1 specification. It
provides all RESTful operations described by the standard. Refer to the specification for
more details: https://www.hl7.org/fhir/http.html.

This component has been developed using the HAPI FHIR Library
(https://hl7.org/FHIR/index.html) that is an open-source implementation of the FHIR
specification in Java which defines model classes for every resource type and datatype
defined by the standard.

Persisted data are translated in RDF format and sent to the component GK-
SemanticDataLake thought its REST APIs.

IFhirServer Provided Interface

create(resourceType: String, resource: Resource): HTTPResponse

Create a new resource in a server-assigned location. POST method

Input(s) resourceType: String resource type of the resource to
create

resource: Resource FHIR Resource to create. The
resource does not need to have an
id element (this is one of the few
cases where a resource exists
without an id element). If an id is
provided, the server SHALL ignore it.

Output HTTPResponse The server returns a 201 Created
HTTP status code, and SHALL also
return a Location header which
contains the new Logical Id and
Version Id of the created resource
version

https://www.hl7.org/fhir/http.html
https://hl7.org/FHIR/index.html

GATEKEEPER – Platform overview

GATEKEEPER © 36

read(resourceType: String, id: String): resultBody: Resource

Read the current state of the resource. GET method

Input(s) resourceType: String resource type of the resource to
read

id: String id of Resource

Output resource: Resource {json/xml} Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

vread(resourceType: String, id: String, vid: String): resultBody: Resource

Read an individual resource instance given a version ID to retrieve a specific version of
that instance to vread that instance). GET method

Input(s) resourceType: String resource type of the resource to
read

id: String id of resource

vid: String version ID to retrieve a specific
version of that instance (optional)

Output resultBody: Resource
{json/xml}

Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

update(resourceType: String, id: String, resource: Resource): resultBody: Resource

Update an existing resource by its id (or create it if it is new) PUT method

Input(s) resourceType: String resource type of the resource to
update

id: String id of resource

resource: Resource FHIR Resource to update

Output resultBody: Resource
{json/xml}

Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

delete(resourceType: String id: String): HTTPResponse

Delete an individual instance of the resource. DELETE method

GATEKEEPER – Platform overview

GATEKEEPER © 37

Input(s) resourceType: String resource type of the resource to
delete

id: String id of Resource to delete

Output HTTPResponse Operation outcome returned by the
FHIRServer in JSON/XML format
together with the HTTP code that
provides feedback about execution
outcome

history(resourceType: String, [id: String]): responseBody: Bundle

Retrieve the update history for a particular resource type, or against a specific instance
of that resource type if an ID is specified. GET method

Input(s) resourceType: String resource type of the resource to
read

id: String (optional) id of Resource to read

Output responseBody: Bundle
{json/xml}

The return content is a Bundle with
type set to history containing the
specified version history, sorted with
oldest versions last, and including
deleted resources

search(resourceType: String, parameters: String[]): responseBody: Bundle

Search all resources of a particular type using the criteria represented in the
parameters. GET method

Input(s) resourceType: String resource type of the resource to
perform the search

parameters: String[] paremeter of the seach request

Output responseBody: Bundle
{json/xml}

The return content is a Bundle the
set of the resources fitting the input
parameters

FHIR Server Provided Interface

IFHIRServer Requested Interface

Provider Method Description Input Output

RDFSemanticDat
aLake

create(rdfData:
String):
HTTPResponse

Persist rdf data
into
RDFSemanticDat
aLake. POST

rdfData: String HTTPResponse

GATEKEEPER – Platform overview

GATEKEEPER © 38

4.5 RDF Semantic Data Lake
This component is an open source modular Java framework for working with RDF data.
This includes parsing, storing, inferencing and querying of/over such data. It offers an
easy-to-use API that can be connected to all leading RDF storage solutions. It allows you
to connect with SPARQL endpoints and create applications that leverage the power of
Linked Data and Semantic Web.

This server should be configured to be compliant to GateKeeper. For now, the only REST
operation that it is used is described in the following that allows to store RDF file.

RDFSemanticDataLake provided interface

create(rdfData: String): HTTPResponse

REST operation that allows to store RDF file – POST method

Input(s) rdfData: String Rdf data to be persisted

Output HTTPResponse Http response of the requests

4.6 Trust Authority
The “TrustAuthority” is the component that will be responsible for validating and
certifying the Things of the GateKeeper platform. It will apply validation tests to the
“Things” based on a predefined set of specifications that will ensure that a thing respects
the rules of the different GATEKEEPER thing profiles (medical device certification,
interoperability with standards, GDPR compliance) and levels of trustiness will be
calculated as a score. Besides, it will act as a Certification Authority (CA) able to issue
digital certificates, which will certify a Thing by giving it the appropriate attributes, and by
describing the ownership of a public key by the named subject of the certificate.”
Furthermore, it will use a distributed ledger so as to keep an audit trail of all transactions
related to things, thus maintaining a detailed history of the whole thing lifecycle.
Furthermore, the ledger will track of operations performed on the available data, such as
creation, access, deletion and sharing among parties, without access to the actual
personal data due to security and regulatory compliance. This component will interact
with the “ThingsManagementSystem” to secure all transaction related to Thing lifecycle
when an external system (e.g. a User) is authenticated and allowed to perform actions to
a “Thing”.

TrustAuthority Provided Interface

authenticateUser(domain: string): string

This method will take as an input the domain used by the User in which the User has
valid credentials; this domain will be used for the credential validation during the
Single sign on mechanism to be used by the User Management module. This method
will interact with any GK component that will need to authenticate Users using the
User Management module of the GTA component (e.g. the Marketplace)

POST: /authenticateUser

Input(s) domain:string this is a string representing the domain to which the user

GATEKEEPER – Platform overview

GATEKEEPER © 39

will be redirected by the User Management module, in
order to validate their credentials using the OAuth2.0
mechanism

Output authorisation_tok
en:string

this is a token provided by the User Management that will
contain encoded authorisation information about the
User based on their certificate issued by the GTA

registerThing(authorisation_token:string, thing:ThingDescription) file

This method will take as an input an authorisation token string that will contain
encoded authorisation information about the User, and a Thing Description (TD) object,
and after applying proper Validation of the Thing based on a set of predefined
standards, it will produce a validation score. This validation score will be linked with
levels of certification and corresponding permissions/roles. A certificate will be issued
for the Thing by the Certificate Authority having as an attribute this Validation Score.
This method will interact with the TMS

POST: /registerThing

Input(s) authorisation_tok
en:string

This is an authorisation token string that will contain
encoded authorisation information about the User

thing:ThingDescri
ption

this is the object representing the device, application,
service etc. See Thing Description in the Information
Model

Output Thing
Certificate:file

this is the certificate file (probably in X.509 format) of the
Thing as provided by the GTA. It will contain the public
key for the Thing as well as the Validation score as
attribute of the Certificate

logAction(string:UserID, string:ThingID, string:ActionType, timestamp:Timestamp)

This method will take as an input a User ID, a Thing ID, and the Type of Action the User
wants to perform on the Thing (e.g. register, consume, etc.) and will log this triplet on
the ledger along with the timestamp of the action. This method will be called by the
TMS API for logging actions on Things and by the User Management Module for
logging actions of Users

POST: /logAction

Input(s) userID this is the ID of the User as contained in the Thing
Description (TD) of the User

thingID this is the ID of the Thing as contained in the Thing
Description (TD) of the Thing

actionType this is the a description of the Action the User wants to do
on a Thing (e.g. register, consume, etc.)

timeStamp this is the timestamp when the action was performed by
the User in the User Interface, e.g. the timestamp when
the User clicked the button to register a new service with
the GK Marketplace.)

GATEKEEPER – Platform overview

GATEKEEPER © 40

References
[1] GATEKEEPER Consortium, Deliverable D3.1 - Functional and technical

requirements of GATEKEEPER platform [due September, 2020]
[2] GATEKEEPER Consortium, D6.2 - Early detection and interventions operational

planning [March, 2020]
[3] GATEKEEPER Consortium, D2.3 - User Requirements and Taxonomy [June, 2020]
[4] Guinard, Dominique; Vlad, Trifa (2015). Building the Web of Things. Manning. ISBN

9781617292682.
[5] https://webofthings.org/2017/04/08/what-is-the-web-of-things/
[6] https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRU

y0ZzUF
[7] https://publications.csiro.au/rpr/pub?pid=csiro:EP189892
[8] https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-

submission/
[9] https://www.w3.org/TR/wot-architecture/#sec-building-blocks
[10] https://json-ld.org/
[11] https://w3c.github.io/wot-thing-description/
[12] Li, W., Tropea, G., Abid, A., Detti, A., & Le Gall, F. (2019, June). Review of Standard

Ontologies for the Web of Things. In 2019 Global IoT Summit (GIoTS) (pp. 1-6). IEEE
[13] https://json-ld.org/
[14] http://hl7.org/fhir/summary.html

https://webofthings.org/2017/04/08/what-is-the-web-of-things/
https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRUy0ZzUF
https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRUy0ZzUF
https://publications.csiro.au/rpr/pub?pid=csiro:EP189892
https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-submission/
https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-submission/
https://www.w3.org/TR/wot-architecture/#sec-building-blocks
https://json-ld.org/
https://w3c.github.io/wot-thing-description/
https://json-ld.org/
http://hl7.org/fhir/summary.html

GATEKEEPER – Platform overview

GATEKEEPER © 41

Appendix A Glossary
Term Description

TD Thing Description

TMS Things Management System

KET Key Enabling Technology

DoA Description of the Action

WoT Web of Things

GK Gatekeeper

GTA Gatekeeper Trust Authority

